skip to main content


Search for: All records

Creators/Authors contains: "Ma, Xiangyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the superiority of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with the quadratic regularization, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid. 
    more » « less